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 Parasitic integration for a single supply differential capacitive sensing 

technique is presented in this paper. In real capacitive sensor measurement, 

parasitic impedance exists in its measurement. This paper objective is to 

study the effect of capacitive and resistive parasitic to the capacitive sensor 

circuit. The differential capacitive sensor circuit derivation theory is 

elaborated first. Then, comparison is made using simulation. Test was carried 

out using frequency from 40 kHz up to 400 kHz. Result is presented and 

have shown good linearity of 0.99984 at 300 kHz, R-squared value. This 

capacitive sensor is expected to be used for energy harvesting application. 
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1. INTRODUCTION  

In instrumentation and measurement research field, capacitive sensor measuring system easily 

provides efficient changes of parameter of interest into various range of capacitance conversion. 

Such advantage takes place without functionality loss compared to resistive and inductive sensors [1]. 

Capacitive sensor uses electric field to sense either conductive or non-conductive material, as long the 

material has surface area, its dielectric material and within the electric field distance [2]. The design of 

capacitive sensors can be categorized into several requirements. Such requirements are shown in works that 

require accuracy [3], resolution [4], noise immunity [5] and sensitivity [6]. 

Due to its low power consumption and its sensing element consumes no energy, capacitive 

transducer sensor could be a contribution factor for low power measurement. There have been great efforts 

on the readout circuit and several reported ways of conversion using capacitance sensing for sensor interface 

circuits. Before capacitance conversion takes place into other forms like frequency, phase or digital, it first 

converts into voltages and continue its conversion process into desired forms depending on the design and 

method used in the system. 

Majority of previous work utilizing the differential capacitive sensing presented based on 

operational amplifiers [7-8]. This work is an extended version of work in [6] that will discuss on its parasitic 

consideration in real application. The supply used in this circuit is a single source that provide its power to 

the discrete components circuits, such as oscillator, operational amplifiers, voltage divider circuit and 

instrumentation amplifier. It was tested that using this method frequency 40 kHz up to 400 kHz are suitable 

to be used in the system. However, focus of this paper is on frequency at 300 kHz. 
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2. RESEARCH METHOD  

One of the important consideration should be included in real circuit are parasitic capacitance and 

resistance associated at the capacitance sensor. This is usually caused by connecting wires and circuit 

construction. The total parasitic capacitance and resistances are often contributing to error in measurement 

from the actual reading and may reduce the sensitivity level of the system if not properly managed. 

 

2.1. Parasitic capacitance and resistance theory 

In actual setting, based on work proposed in [6], there are also parasitic capacitance, Cp1 and Cp2 at 

capacitance sensor, Cx which is located at on one side of the Cx electrode, parallel to the excitation sinusoidal 

source and parallel to the noninverting amplifier input, respectively. The third parasitic capacitor, Cp3, which 

is found at the offset capacitor parallel to the Cx can be cancelled by nulling the capacitor or offset nulling 

through differential capacitance sensing, as confirmed in [5, 9-10]. These parasitic capacitance and 

resistances are shown in Figure 1. The proposed differential capacitive sensor is based on Figure 2 of [6] 

and [11]. This figure is not included in this paper due to avoid repetitive publication. 

 

 

 
 

Figure 1. Half of the differential capacitance sensing circuit with parasitic 

 

 

 
 

Figure 2. Estimated bode plot of Vout_A/Vin from the theory 

 

 

In this case, capacitive sensor, Cx electrodes need to be properly shielded in order to give actual 

measurement and to avoid environment electromagnetic interference that would affect the behaviour of the 

circuit. However, in real situation stray capacitance always form between the shielding and the electrodes 

even in fully shielded condition. 

Due to this, proper handling on the contributed parasitic resistance and capacitances should be taken 

into account. Theoretically, parasitic capacitance, Cp1 and Cp2, have virtually no effect on the current passing 

through Cx when measurement is taken from the sensor capacitor, Cx. This is due to the low ohmic of the 

input voltage excitation signal at one side of the electrodes and Cp2 is negligible because of low impedance 

value at the input amplifier. 
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The excitation voltage, , with an amplitude voltage, Vext, excitation frequency, 

fext, and φ is the magnitude phase angle. ZB is an equivalent impedance at the sensor capacitance, Cx, where 

the parasitic resistance, Rp, and parasitic capacitance, Cp3, are in parallel to the sensor. Zfeedback is the 

equivalent impedance at the sensing Opamp. Note that in this writing, the discussion only focus on one side 

of the differential Capacitance-to-Voltage Converter (CVC), since the other half behave the same as long as 

the components value is kept identical in symmetrical order. The transfer function derivation of circuit in 

Figure 1 are given in (1) to (3) 

 

 (1) 

 

 (2) 

 

 (3) 

 

2.2. The proposed conditions exist in real situation 

This transfer function is independent of parasitic resistors as long as it is within the passband 

frequencies. By substituting (1) and (2) into (3), the transfer function of Vout_A is extended from [12] as in the 

following:  

 

 

(4) 

 

The target of CVC system is to have an independent and single source, i.e. from ambient energy, 

free from other additional sources, such as the battery. Due to the requirement, reference DC voltage source 

needs to be taken care of. Here, the value of the reference voltage, Vref, which to be supplied to the non-

inverting Opamp input is obtained through voltage divider circuit supplied by the energy harvested source, 

Vs. The reference voltage, Vref, is set at half of source voltage, Vs, in order to gain a non-zero level output 

voltage at the end output voltage. This is due to the fact that any negative sides of sinusoidal wave will be cut 

out after rectification at the rectifier circuit (please refer to Figure 2 of [6]). Therefore, it is chosen to have the 

output voltage to be shifted at the half of Vs, which is at the reference voltage, Vref. 

As mentioned earlier, the supply voltage, Vs is obtained from ambient energy. Energy for Vref is by 

choice is kept constant. However, because the source to this Vref is supplied by supply voltage, Vs, received 

from available ambient sources. It should worth to consider certain cases may happen, i.e. decreasing in 

supply voltage from intended voltage level. Further effect can be studied on (4) by simplifying the equation 

to (5) to study the inconsistent Vref voltage value conditions that may exist in the circuit. 

 

 (5) 
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where 

 

 (6) 

 

It can be seen in (5) the output voltage includes Vref and excitation voltage, Vext, in its output value, 

Vout_A. The output voltage is categorised into several cases: (i) Vref=0 (ii) Vref < Vext (iii) Vref=Vext and (iv) Vref > 

Vext as supported in [13]. The transfer function equations are derived as in (3.13) to (3.16) 

 

Case I: Vref=0 

 

 (7) 

Case II: Vref < Vext when Vref=(1 - m)Vext where (0 < m < 1) 

 

 (8) 

 

Case III: Vref=Vext 

 

 (9) 

 

Case IV: Vref > Vext when Vref=nVext where (n > 1) 

 

 (10) 

 

where m and n is the multiplier numbers of excitation input voltage, Vext equal to (1-m)Vext or nVext. 

As long the excitation frequency satisfies the condition of within the cutoff frequencies boundary 

conditions imposed by the parasitic resistances, the frequency of input voltage is independent to the CVC 

system. The cutoff frequencies are: 

 

 (11) 

 

 (12) 

 

 (13) 

 

Several conditions may exist to the output voltage, one of it is when Vref=0, the transfer function of 

, is further derived to obtain the estimated output voltage frequency range. This is shown in 

bode plot in Figure 2 where component values are as derived in (14) 

 

   






































Px

PA

PA
ff

PxP

PA

f

CC
RR

RR
jCRj

CCRj

RR

R
A





11

1

A
V

V

ext

Aout


_

    AmA
V

V

ext

Aout
 11

_

1
_


ext

Aout

V

V

 Ann
V

V

ext

Aout
1

_


ff

ext
CRj

f


1


 PxP

ext
CCRj

f





1

 PxPA

PA
ext

CCRRj

RR
f








A
V

V

ext

Aout


_



        ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 3, September 2019 : 798 – 807 

802 

 (14) 

 

 

(15) 

 

 

3. PARASITIC CAPACITANCE AND RESISTANCE INTEGRATION SIMULATION RESULTS  

The simulation is done using OrCAD Capture Cadence 18.0 PSpice simulation. When Vref=0, using 

components Cf=Cr=Cx0=5 pF and Rf=10 MΩ, Cx=8 pF and parasitic resistance RA=20 MΩ, and RP=2.2 Ω 

parasitic capacitance, CP=5.6 pF. From Figure 2 and (14), expected corner frequencies from calculation in 

(11), (12) and (13), are 751 Hz, 3.18 kHz and 6.82 GHz, respectively as shown in the results of Figure 3. 

This shows a match simulation with the estimated theoretical drawing and values. 

 

 

 
 

Figure 3. Simulated magnitude at opamp a output with parasitic 

 

 

Further analysis of the overall transfer function for second condition when Vref < Vext the transfer 

function is . Simulation result with integration of parasitic resistance and 

capacitance is shown in Figure 4. Expected corner frequencies from calculation in (11), (12) and (13), are 

159, 588 Hz and 31.9 kHz using components Cf=Cr=Cx0=5 pF and Rf=1 MΩ, Cx=8 pF and parasitic resistance 

RA=20 MΩ, and RP=2.2 Ω parasitic capacitance, CP=5.6 pF. 
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Figure 4. Simulated magnitude transfer function at the output CVC circuit. 

 

 

3.1. Simulation of output voltage without parasitic integration 

The linearity graph across frequencies obtained using Rf=10 MΩ, Rd=100 kΩ and Cd=0.1 µF, have 

shown wider detection range and high in sensitivity when run less than and equal to fext=100 kHz. However, 

when frequency goes higher than 100 kHz, which is shown in Figure 5, less points of detection is observed, 

and the sensitivity is low. 

 

 

 
 

Figure 5. Effect of output voltage with Cx variation for Rd=100 kΩ and Cd=0.1 µF using Vs=3.3 V at 300 kHz 

 

 

By rules, the f-3dB should be low than the cutoff frequency (fc=3.18 kHz). In this case has satisfied 

the condition when using Rd=100 kΩ and Cd=0.1 µF, the f-3dB=15.9 Hz. Improvement on the number of 

detection points across certain capacitance range is increased by increasing the bandwidth of the low pass 

filter. This is by decreasing the Rd value and Cd value of the components. Figure 6 shows the simulation 

results using low Rd and Cd values of 10 kΩ and 0.01 µF respectively, with Rf=10 MΩ. In this case, the cutoff 

frequency, f-3dB=1.59 kHz, which satisfy the condition less than cutoff frequency fc=3.183 kHz. 
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Figure 6. Effect of output voltage with Cx variation for Rd=10 kΩ and Cd=0.01 µF using Vs=3.3 V at 300 kHz 

 

 

The same trend is observed when frequency is increased, the detection capacitance is minimized. 

Compare to the previous results of Figure 5, the differential CVC output voltage is improved by more points 

were detected across wider capacitance range, using same capacitance change, ΔCx=0.5 pF as seen in Figure 

6. This method is suitable if high frequency of operation is targeted over the sensitivity, due to low sensitivity 

is observed at high frequency.  

Improvement is made to the capacitance change, ΔCx so that wider capacitance range is been 

detected with low detection change at high frequency. This is done by using the Rf selection method. This 

method is considered relevant due to diode current value at higher frequency (i.e: 300 kHz) is becoming 

stable regardless of the change of the Rf value (refer to diode current of Figure 3 of [14] for Rd=10 kΩ and 

Cd=0.01 µF). Same principle applied to any components value at higher frequency, such as when Rd=10 kΩ 

and Cd=0.1 µF of Figure 2 of [14]. 

Figure 7 shows the linearity result using ΔCx=0.1 pF change with Rd=10 kΩ and Cd=0.1 µF. 

Different Rf has been selected to overcome the sensitivity problems where Figure 7 is at Rf=200 kΩ at 

fext=300 kHz. These values must satisfy the condition > f-3dB range. In this case the frequencies are 3.183 kHz, 

159 kHz and 106 kHz respectively, when f-3dB=159.13 Hz. At high frequency, high sensitivity of capacitive 

change of detection is achieved by reducing the value of the feedback resistor Rf, 

 

 

 
 

Figure 7. Corrected capacitance change, ΔCx=0.1 pF with Rf=200 kΩ at fext=300 kHz 

 

 

3.2. Simulation with parasitic capacitance and resistance integration 

In this test, parasitic capacitance and resistance involved in the real situation is mimicked as in the 

Zsense part of circuit in Figure 1 under parasitic capacitance and resistance region. This is done by using the 

component’s value tested earlier, Rf=10 MΩ, Cf=5 pF, Rd=10 kΩ, Cd=0.1 µF, Vs=3.3 V, Cr=5 pF, Cx=0.1-12 
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pF, and by including the parasitic components, RA=2.2 Ω, RP=30 MΩ, Cp3=0.05 pF, Cp1=0.56 pF, Cp2=0.56 

pF for comparison purpose. Figure 8 shows the results using 300 kHz frequency. The 300 kHz frequency was 

chosen to test the possibilities and condition of the differential amplifier when running at frequency higher 

than 100 kHz.  

 

 

 
 

Figure 8. Corrected capacitance change, ΔCx=0.1 pF with Rf=200 kΩ at fext=300 kHz 

 

Table 1 shows the results with and without parasitic condition at 300 kHz excitation frequency. As 

predicted, the power consumption is higher with parasitic resistance and capacitance load. However, the 

output voltage range is higher with parasitic. 

 

 

Table 1. Different simulation result using Rd=10 kΩ and Cd=0.1 µF when excitation frequency, fext=300 kHz 

with and without parasitic resistance and capacitance exist 

Test 
Detection 

range, Cx (pF) 

Output 

Voltage (V) 

Pdiss 

(mW) 

Sensitivity 

(mV/fF) 

R-squared 

value 

With Parasitic 1.0 – 6.0 2.1075 – 2.4122 78.5 0.06094 0.99984 

Without Parasitic 4.7 – 6.6 1.6446 – 1.6869 3.83 0.02226 0.99944 

 

 

It is observed from the simulation result; power dissipation is increased when parasitic is included in 

the design. This is due to the high resistance involved across the capacitance detection sensor, Cx (i.e: RP=30 

MΩ). Therefore, more energy is needed for the operation. As a result, the DC output voltage range has also 

increased in the system. Proper measurement is required to obtain these stray resistances and capacitances 

value, but absolute values are impossible to be measured in real situation. Precaution is done to avoid 

unnecessary error and is according to the minimal value of pF range stated in [10], so that the parasitic value 

is not affected the Cx value. For example, when the parasitic across the Cx is chosen to be of the Cx, 

(i.e: Cp3=0.05 pF). Results have shown a wider detection range with increasing in sensitivity. In contra, power 

dissipation has also increased. These analyses and results were supported in [15]. 

 

 

4. CONCLUSION 

In summary, this work has shown a proposed differential capacitive sensing with parasitic 

impedance. It is important to integrate the real situation into design consideration. Result has shown an 

increase of power dissipation to the system. A small increasing of 0.03868 mV/fF and 0.99984 were shown 

for sensitivity and R-squared values respectively at the output voltage, with parasitic components integration. 

The capacitance detection range is 1.0 – 6.0 pF. In future, a proposed solution can be done to improve points 

of detection of output voltage capacitance sensing across frequencies, by properly setting the values of 

component involved such as resistance and capacitance of the differential capacitive sensing. 
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